
Pathogen evasion strategies for the major histocompatibility
complex class I assembly pathway

Introduction

Most nucleated cells express major histocompatibility

complex (MHC) class I molecules, providing them with

protection against invading pathogens by allowing the

display of cellular contents to the immune system. The

MHC class I molecules can sample both the intracellular

and extracellular milieus for defective and foreign pro-

teins by presenting peptide fragments to immune effector

cells. The MHC class I–peptide complexes are monitored

by cells of both the innate and acquired immune systems,

namely natural killer (NK) cells and CD8+ cytotoxic T

lymphocytes (CTL), respectively.

Microbial pathogens that access the sustainable micro-

environments provided by complex vertebrate organisms

must overcome the many facets of the immune system

designed to eliminate foreign invaders. In turn, the

immune system attempts to unmask and eliminate such

pathogens. The constant struggle between host and patho-

gen is thought to drive an ‘evolutionary arms race’

between the pathogens and their respective hosts’

immune systems. One area of immunobiology that has

become increasingly well understood is the biosynthetic

pathway of MHC class I assembly. This has been

achieved, not only through a greater understanding of the

biochemical pathway, but by unravelling mechanisms
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Summary

Major histocompatibility complex (MHC) class I molecules bind and pres-

ent short antigenic peptides from endogenously or exogenously derived

sources to CD8+ cytotoxic T lymphocytes (CTL), with recognition of a

foreign peptide normally targeting the cell for lysis. It is generally thought

that the high level of MHC polymorphism, which is concentrated mostly

within the peptide-binding groove, is driven by the ‘evolutionary arms

race’ against pathogens. Many pathogens have developed novel and

intriguing mechanisms for evading the continuous sampling of the intra-

cellular and intercellular environments by MHC molecules, none more so

than viruses. The characterization of immunoevasion mechanisms has

improved our understanding of MHC biology. This review will highlight

our current understanding of the MHC class I biosynthetic pathway and

how it has been exploited by pathogens, especially viruses, to potentially

evade CTL recognition.
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Abbreviations: b2m, beta-2-microglobulin; BiP, immunoglobulin binding protein; C, cysteine; CTL, cytotoxic T lymphocytes;
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employed by pathogens, particularly viruses, to evade pre-

sentation by MHC molecules.

MHC class I assembly – a chaperone-mediated
event

MHC class I molecules are composed of a tripartite com-

plex of heavy (H) chain (45 000 MW), b2-microglobulin

(b2m) light chain (12 000 MW) and a peptide between 8

and 10 amino acids in length. MHC class I molecules

assemble within the oxidizing environment of the endo-

plasmic reticulum (ER) via a series of chaperone-medi-

ated events which occur in two main phases: (1) an early

assembly pathway, governing the appropriate folding of

the H chain with b2m and (2) a later stage characterized

by the formation of the ‘peptide-loading complex’ (PLC)

and the acquisition of optimal peptides.1 Once suitable

peptide has been bound, MHC class I molecules exit the

ER, transit through the Golgi apparatus to the cell surface

to present their cargo to CD8+ T cells. Throughout the

pathway, MHC class I molecules are closely scrutinized,

with misfolded molecules being discarded through a pro-

cess referred to as ER-associated degradation (ERAD).

This extra level of quality control performed by the PLC

distinguishes MHC class I molecules from many other

proteins that assemble within the ER.

The early folding stages – prepeptide loading
complex

MHC class I H chains are composed of three distinct

extracellular domains, a transmembrane (TM) domain

and a cytoplasmic (CYT) domain. The a1 and a2

domains, form two a-helices and a series of b-pleated

sheets, comprising the walls and floor of the peptide

binding groove respectively. The a3 domain adopts an

immunoglobulin-like fold, forming the predominant non-

covalent interactions with b2m. The H chain possesses

four conserved cysteine (C) residues, forming two struc-

turally important disulphide bonds within the a2 and a3

domains between C101–C164 and C203–C259 respec-

tively.

Calnexin and the ‘folding cage’

Newly synthesized MHC class I H chains associate with the

TM-bound chaperone calnexin,2 via a monoglucosylated

(Man9GlcNAc2Glc1) sugar moiety chemically linked to the

conserved asparagine at position 86 of the H chain,3–5 with

binding regulated by glucose trimming of nascent N-linked

oligosaccharides (Fig. 1 step 2).6 Structural analysis of the

calnexin ER luminal domain revealed that the glycan bind-

ing site would place the MHC class I H chain within the

extended proline-rich domain (P domain), providing a

‘folding cage’ for the initial stages of assembly.7 A semiper-

meabilized cell system, demonstrated that calnexin can

partition and stabilize unfolded H chain away from the

ERAD machinery,8 but in the absence of calnexin, assembly

proceeds normally.9 The P domain also recruits the oxido-

reductase ERp57 (Fig. 1 step 3), a member of the protein

disulphide isomerase (PDI) family of proteins, which

reduce, oxidize or isomerize disulphide bonds.5,10,11 ERp57

possesses two reactive thioredoxin-like CXXC motifs

within the N-terminal and C-terminal domains, referred to
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Sec61 complex
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CNX

Partially folded/unfolded MHC class I H
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Figure 1. Early stages of major histocompatibility complex (MHC) class I assembly; newly synthesized MHC class I heavy (H) chain is translocated

through the Sec61 channel. It remains undetermined whether newly synthesized or misfolding H chain associates with immunoglobulin-binding

protein (BiP; step 1). Calnexin (CNX) associates with newly synthesized H chains via a monoglucosylated sugar moiety (G). The relationship

between BiP and calnexin-associated H chain remains undefined (step 2). Calnexin can recruit ERp57 (step 3) to aid in the folding of native protein.

ERp57 can be found in direct association with MHC class I H chains (steps 4 and 5). MHC class I H chain association with b2-microglobulin (b2m)

leads to calnexin displacement and can promote disulphide bond formation (step 6).
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as a and a0, respectively. The spacing between the cysteine

residues of the reactive motifs appears to be important in

maintaining ERp57 in the appropriate redox active state.12

ERp57 can form several direct conjugates with the H chain

via transient disulphide bonds with C101 and C164, proba-

bly reflecting the different folding stages of the H chain

(Fig. 1 step 4 and 5).13,14 The transient interaction between

MHC class I H chain and ERp57 could be part of the

ERAD pathway for H chains, whereby MHC class I H

chains are reduced on route to proteasome degrada-

tion.14,15

BiP, an undefined association

MHC class I H chains can also be detected in association

with the immunoglobulin-binding protein (BiP) (Fig. 1

step 1).16,17 The precise function of this BiP association is

undetermined but BiP has been described to bind tran-

siently or for a prolonged period to newly synthesized or

misfolded proteins, respectively.18,19 It remains unknown

whether BiP association is a function of newly synthesized

or misfolded MHC class I H chains, though certain alleles

can form strong associations with BiP, such as human

leucocyte antigen (HLA) B27, which are known to exhibit

an enhanced tendency to misfold.17,20 Alternatively, the

association of BiP may depend on the kinetics and stabil-

ity of certain HLA alleles.17 Such factors have been

described as determining factors for other BiP associating

proteins such as components of immunoglobulin.18

Pre-PLC subversion-enhanced endoplasmic
reticulum associated degradation

It is interesting to note that, to date, no pathogen has tar-

geted chaperones of the early folding pathway to inhibit

MHC class I synthesis. This might reflect a requirement

for chaperones such as calnexin and ERp57 in the folding

of pathogen proteins,21,22 but it also appears that remov-

ing chaperones such as calnexin does not have a dramatic

impact on MHC class I expression.9

Throughout the folding process, misfolded MHC class I

molecules are prone to ERAD,23,24 a process involving

dislocation into the cytosol possibly using the Sec61 com-

plex.25 Mannose trimming and unfolding of MHC class I

H chains can occur before retrotranslocation, a process

thought to occur through a putative subcompartment of

the ER, termed the ‘quality control’ compartment.26,27

The MHC class I H chains are then targeted for protea-

some-mediated degradation by the addition of ubiquitin

(Ub), a small 76-amino-acid protein, whose C-terminal

glycine forms an isopeptide bond with the e-amino group

of lysines (K) or the NH2 group at the N terminus of

proteins.28 Ubiquitination involves the sequential action

of three enzymes, a Ub-activating enzyme (E1), a Ub-

conjugating enzyme (E2) and a Ub-ligase (E3).29

Promoting the degradation pathway

Human cytomegalovirus (HCMV) encodes within its

unique short (US) region a series of gene products,

expressed during different stages of viral infection, that

affect MHC class I biosynthesis and expression. It encodes

two gene products US2 and US11,25 which enhance the

degradation of ER-localized MHC class I H chains. US2

and US11 are small TM ER-resident glycoproteins with a

small degree of homology to each other30 that use distinct

pathways to achieve the same goal.31 A cell-free system

demonstrated that US2 requires both its TM and CYT

domains, while US11 relied only on its TM domain,31,32

to trigger MHC class I dislocation. US11 depends on

MHC class I a1/a2 domain interactions and US2 associ-

ates predominantly with the a2/a3 domain,33 which was

confirmed by the structural determination of US2 in asso-

ciation with HLA-A2,33,34 with further differences in allele

sensitivity to US2 degradation attributed to residues

within the 180–183 region.31,35 It was suggested that US2

exhibited a preference for properly folded, b2m-associated

MHC class I molecules,36 but in a b2m-negative cell line,

unfolded H chains were susceptible to US2- and US11-

mediated ERAD.37 Once in the cytosol, the H chain is

ubiquitinated before deglycosylation38 by the activity of

the cytosolic peptide N-glycanase, Pgn (Fig. 2).25,39

MHC class I ERAD; more than one way for waste
disposal

US11 and US2 exhibit further differences in their ability

to degrade class I molecules depending on the cell type.

US11 is more efficient than US2 in MHC class I disposal

when expressed in dendritic cells, raising the possibility

that pathogens have evolved cell-type-specific mechanisms

for immune evasion.40 The dislocation event is sensitive

to changes in the ER redox environment.15 Degradation

mediated by US2, but not that mediated by US11,

appears to require the a3 domain C203–C259 disulphide

bond,41 while US11-mediated degradation was compro-

mised in the presence of proteasome inhibitors and in the

absence of b2m.37 The presence of b2m can support

disulphide bond formation42 and alter the chaperone

association of H chains,43,44 indicating that perhaps

US11-mediated degradation depends upon certain redox

states and/or chaperone activity.

It was apparent that the different criteria for US2- and

US11-mediated activity, reflected the use of distinct deg-

radative pathways (Fig. 2). Both US2 and US11 require

ubiquitination of the H chain, but employ different

components of the Ub-system.41 This was illustrated by

disruption of the E3 Ub-ligase SelL1 affecting US11-medi-

ated degradation, but not US2-mediated degradation.45

US11 was found to link MHC class I H chains to a

‘dislocation complex’ comprising Derlin-1 (a human
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homologue of yeast DER1p protein), VCP (p97)-intera-

cting protein (VIMP) and an AAA-ATPase, p97,46,47,48

which associates with the cofactors Np14 and Ufd1.49 The

Derlin-1 interaction is dependent on a glutamic acid at

position 192 of the US11 TM domain47 and appears to

be important in the induction of the unfolded protein

response, a cellular stress response to misfolded protein.

In contrast, US2 does not induce the unfolded protein

response,50 coincident with it not using Derlin-1.47 The

only ERAD protein to be identified to date that associates

with US2 is the signal peptide peptidase,51 an ER-resident

presenilin-type aspartic protease, which can cleave sub-

strate polypeptides within TM regions (Fig. 2).52,53

The peptide loading complex – peptide loading
and quality control

On association of b2m with MHC class I H chain, calnex-

in is displaced and replaced by a soluble ER lectin chaper-

one, calreticulin.54 Like calnexin, calreticulin binds to

monoglucosylated N-linked glycans and possesses an

extended P domain which recruits ERp57.55–57 Partially

folded MHC class I molecules together with calreticulin

associate with the transporter associated with antigen pro-

cessing (TAP) via the MHC class I specific accessory mol-

ecule tapasin (TPN) to form the PLC.54 The PLC allows

the acquisition and optimization of the peptide cargo

before transit to the cell surface (Fig. 3).58,59 One impor-

tant feature of the PLC is the co-operative binding nature

of the respective components, which makes it difficult to

study their individual effects.1

Tapasin, the central scaffold of the PLC?

It appears that the central scaffold for the PLC is TPN,

which allows for stable TAP expression;60 it is directly

conjugated to ERp57 by a disulphide linkage between C95

of TPN and C57 of the a domain CXXC reactive motif of

ERp57 (Fig. 3).61 TPN, in concert with ERp57, can opti-

mize the peptide cargo of PLC-associated MHC class I H

chains.62,63 The interaction with TPN maintains ERp57

within the PLC and inhibits the ‘escape’ pathway charac-

teristic of oxidoreductases, i.e. prevents the oxidation–

reduction cycle. This in effect maintains ERp57 in a pre-

dominantly reduced state within the PLC,64,65 allowing

the a0 domain CXXC motif to interact with MHC class I

H chains.66 The C101–C164 bond is thought to be in a

reduced state until optimal peptide is bound. One predic-

tion of this model would be that MHC class I H chains

should form a transient trimolecular complex with the

ERp57–TPN conjugate.14 Using alkylation to ‘trap’ tran-

sient disulphide intermediates, such a complex has

recently been described,66 which suggests that the ERp57–

TPN conjugate controls the final redox state of the MHC

class I H chain.66

The archetypal member of the PDI family, PDI, has

recently been described as part of the PLC.67 Using a ser-

ies of elegant ‘knockdown’ mutants, PDI was ascribed a

similar function to ERp57, in addition to binding pep-

tides required for MHC class I loading. It is difficult to

reconcile these findings with the function of the ERp57–

TPN complex, but the detection of a putative complex

between class I H chain–ERp57–TPN–PDI66 suggests that
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Figure 2. Inhibition of the early stages of assembly; US11 and US2 enhance the endoplasmic reticulum-associated degradation pathway of major

histocompatibility complex (MHC) class I heavy (H) chains but through distinct pathways. US11 recruits a dislocation complex composed of

Derlin1, VIMP and a p97 complex. The H chain is retrotranslocated into the cytosol and targeted for degradation by ubquitination (Ub) through

the activity of E2 and E3 ligases such as SelL1. The H chain is deglycosylated by the N glyconase Pgn before proteolytic degradation. US2 appears

to recruit a different set of proteins. Signal peptide peptidase is thought to work in concert with as yet defined protein(s) (?), which can lead to

the enhanced proteasome mediated degradation of H chain.
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these molecules may work in concert. As ERp57 is in a

reduced state, this limits its activity to reduction and

isomerization. While not demonstrated within the PLC,

other studies have shown that PDI predominantly partici-

pates in oxidation,68,69 therefore it is possible that PDI

and ERp57 work together to reduce and oxidize the

C101–C164 bond. ERp57 knockout cells and knockdown

experiments revealed that the redox status of MHC class I

H chain remains unaffected,70,71 probably reflecting the

role of PDI in H chain oxidation.

Calreticulin plays a key role in allowing MHC class I

molecules to acquire an optimal peptide cargo. Calreticu-

lin knockout cells demonstrate poor MHC class I cell sur-

face expression and a cargo with low-affinity peptides.72

Interestingly, ERp57 knockout cells reveal poor recruit-

ment of calreticulin to the PLC, which may account for

the poor stability of cell surface MHC class I molecules,

further illustrating the co-operative binding nature of the

PLC.70

The PLC bottleneck – a prime target for
subversion

The association with the PLC represents a potential bot-

tleneck in MHC class I expression making it an effective

focus for immune evasion (Fig. 4). There are broadly

three types of PLC-mediated inhibition; (1) retention of

MHC class I molecules within the ER and prevention of

PLC interactions, (2) degradation of PLC components

and (3) shutting off the crucial supply of peptide.

Retention of MHC class I molecules within the ER
and prevention of PLC interactions

The earliest mechanism describing inhibition of MHC

class I expression was the ER retention of MHC class I

molecules by the 19 000 MW adenovirus gene product

E19 using a KKXX ER-retention motif (Fig. 4a step 1).73–

75 Subsequently, E19 was demonstrated to increase the

association of MHC class I molecules with the ubiquitous

cellular amyloid precursor-like protein 2 (APLP2), which

independently of E19, can reduce cell-surface-expressed

MHC class I molecules.76,77 The HCMV products US3

(Fig. 4a step 1) and US10, can either retain MHC class I

molecules within the ER or delay their trafficking through

the ER to the cell surface, respectively.30,78–81 A product

from the unique long (UL) region of HCMV, a tegument

phosphoprotein pp71 encoded by UL82 and cowpox

virus, can delay MHC class I trafficking in a hitherto

undefined manner.82,83 The mouse cytomegalovirus m152

protein retains H chains not in the ER, but within the

ER–Golgi intermediate compartment.84

In addition to retention, E19 and US3 interfere with

the action of TPN. E19 has been shown to bind TAP

independently, preventing TPN-dependent alleles from

entering the PLC, thereby inhibiting the activity of
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Figure 3. The peptide loading complex; partially folded major histocompatibility complex (MHC) class I molecules in association with calreticu-

lin are incorporated into the peptide loading complex (PLC). MHC class I heavy (H) chains interact with tapasin (TPN) which tethers them to

the transporter associated with antigen processing (TAP) complex. TPN is directly conjugated to ERp57 via a disulphide bond. The ERp57–TPN

conjugate, possibly in concert with protein disulphide isomerise (PDI) allow for the acquisition of optimal peptides that are transported in an

ATP-dependent manner by the TAP complex.
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TPN.85 US3 though can bind directly and independently

to both TPN and TAP, inhibiting peptide optimization of

PLC-associated MHC class I molecules (Fig. 4a step 2).86

Degradation of PLC components

TAP, TPN and MHC class I molecules within the PLC

can be specifically selected for ERAD. The type III ER

membrane protein mK3 (Fig. 4b) encoded by the murine

c-2 herpesvirus 68 is a member of the RING-CH family

of viral immunoevasion genes that are found in different

members of the c2-herpesvirus and in the unrelated pox-

viruses.87 Unusually they employ the same mechanism of

action, i.e. ubiquitination, to target immunoreceptors for

down-regulation. These proteins share an N-terminal zinc

binding motif with homology to RING fingers and plant

homeobox domain motifs, which are found in a family of

proteins that possess Ub-E3 ligase activity.88–90

The mK3 directly associates with MHC class I mole-

cules, probably through CYT domain interactions,88 lead-

ing to the ubiquitination of membrane-bound and

glycosylated MHC class I molecules.91,92 Ubiquitination is

dependent on the RING domain and N terminus of the

mK3 protein88,91 and leads to the dislocation and targeted

degradation of MHC class I molecules within the PLC by

exploiting similar components to those used by US11,

such as p97 (Fig. 4b step 6).46,47

The non-classical glycosylphosphatidylinositol mem-

brane-anchored MHC class I molecule Qa-2 (which lacks

a cytoplasmic domain to enable ubiquitination) is also

subject to mK3-mediated ERAD, but via mK3’s ability to

enhance the degradation of TPN and TAP, especially

TAP2. This is especially intriguing because TAP2 was

demonstrated to possess a docking site for TPN, allowing

effective PLC formation.93 The mK3 protein requires

intact TPN to degrade class I H chains and only the TM/

CYT domain of TPN to degrade TAP.94 Expression and

function of mK3 are therefore coupled to the level of

antigen processing and presentation via TAP/TPN

interactions, which may explain why mK3 MHC class I

degradation is resistant to interferon-c-induced up-regu-

lation.95 UL49.5, a 9000 MW protein encoded by

varicelloviruses such as bovine herpesvirus 1 and pseudo-

rabies virus also inactivate TAP by promoting its degrada-

tion as well as inducing conformational changes that

inhibit peptide translocation.96,97 US3 appears to target

PDI for degradation (Fig. 4a step 3), hence interfering

with the redox status of MHC class I molecules.67 This

would appear to be an unusual target for degradation

because PDI can be involved in viral protein folding. It

remains to be determined whether it is the PLC-associ-

ated PDI that is specifically targeted in preference to the

general cellular pool.

Shutting off the crucial supply of peptide

Inhibiting peptide supply by interfering with TAP func-

tion is an effective way of down-regulating MHC class I
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Figure 4. Inhibition of the peptide loading complex (PLC); the adenovirus E19 protein and the human cytomegalovirus (HCMV) US3 protein

can both retain major histocompatibility complex (MHC) class I molecules, thereby preventing their transit to the cell surface (step 1). Both E19

and US3 can interfere with tapasin (TPN) activity (step 2), with US3 also enhancing the degradation of protein disulphide isomerise (PDI) in an

undefined manner (step 3). The PLC is further targeted by inhibition of the peptide supply. ICP47 can act as a peptide inhibitor (step 4), while

US6 prevents ATP hydrolysis (step 5). The mK3 protein inhibits the PLC by interacting with the MHC class I heavy (H) chain, transporter asso-

ciated with antigen processing (TAP) and TPN, which can recruit Derlin1, VIMP and the p97 complex to enhance the degradation of these PLC

components (step 6). Expression of MK3 is determined by TAP/TPN interactions, therefore modulating inhibition according to the level of anti-

gen processing.
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expression. The herpes simplex virus ICP47 protein and

the HCMV US6 protein are the best-characterized TAP

inhibitors (Fig. 4a). ICP47 is an 88-amino-acid protein

that occupies the peptide binding site located in the cyto-

sol and acts as a high-affinity peptide competitor for pep-

tide binding (Fig. 4a step 4).98–102 US6, a 21 000 MW ER

luminal protein, prevents binding of ATP especially by

TAP1, even though the nucleotide binding domain sites

are cytosolically located (Fig. 4a step 5). Binding to the

ER luminal side of TAP, US6 appears to exert or main-

tain a specific conformational change inhibiting ATP

hydrolysis and thereby preventing peptide transloca-

tion.103 ICP47 has a differential affect on HLA alleles

depending on their requirement for the PLC. This was

demonstrated for two subtypes of HLA-B44, i.e. 02 and

05, which differ by a single aspartic acid to tyrosine

change at position 116, respectively. HLA-B4405, which is

TPN independent58 and therefore does not require the

PLC for expression, was found to be more resistant to

TAP inhibition. Such an observation raises the possibility

that certain MHC polymorphisms have been selected to

overcome pathogen effects on their biosynthesis.104

Transit to the cell surface

The transit of MHC class I molecules from the ER to the

cell surface, does not only depend on optimal peptide

binding. Conformational changes within the TAP com-

plex can govern MHC class I release from the PLC. TAP

nucleotide binding domain mutants and nucleotide deple-

tion experiments suggest that peptide-mediated dissocia-

tion of MHC class I molecules depends on

conformational signals arising from TAP.105,106 Upon dis-

sociation from TAP, peptide-loaded class I molecules can

cluster at ER exit sites, and associate with a putative

transport receptor BAP31, a 28 000 MW TM protein pre-

viously found associated with immunoglobulin D.107

These exit sites exclude TAP and TPN, which strongly

suggests that MHC class I ER export is highly regulated

and receptor mediated.

Down-regulation of cell surface molecules

Though fully folded and peptide loaded, MHC class I

molecules continue to remain susceptible targets and are

primarily subjected to two general modes of inhibition,

either mis-sorting or enhanced internalization. The best-

described inhibitors of MHC class I cell surface molecules

are those encoded by Kaposi’s sarcoma-associated herpes-

virus (KSHV) and the human immunodeficiency virus

(HIV).

Two proteins encoded by KSHV, K3 and K5, target

MHC class I molecules at the cell surface. K3 and K5 are

members of the same family of viral proteins as mK3,

which share an N-terminal RING-CH domain and act as

E3 Ub-ligases.108 While mK3 appears to target ER-resi-

dent MHC class I molecules, K3 and K5 target fully

mature cell-surface-expressed molecules for ubiquitina-

tion, which enhances internalization and trafficking to

endosomal/lysosomal compartments.90 K3 can down-reg-

ulate both classical and non-classical class I molecules

whereas K5 only targets HLA-A and HLA-B alleles with

substrate specificity governed by TM interactions.109,110

K3 and K5 differ in their use of target K residues, reflect-

ing the possible use of different E2 Ub-conjugating

enzymes.108 Unusually, K3 can also ubiquitinate cysteine

residues,111 which form a labile thiol–ester bond, whereas

K5 is highly dependent on cytoplasmic K residues.

A conserved area of 41 amino acids within the C-termi-

nal domain containing several putative sorting motifs,

distal to the second TM domain of K3, appears to be crit-

ical for targeting MHC class I H chains to lysosomes.112

E2 Ub-conjugating enzymes, in particular UbcH5b/c, are

involved in monoubiquitinating MHC class I H chains,

which in turn initiate polyubiquitination by Ubc13. Poly-

ubiquitination via K-63 Ub chains (Ub molecules linked

via K at position 63 of Ub) of MHC class I H chains,

leads to clathrin-dependent internalization, which requires

the epsin1 endocytic adaptor (a clathrin adaptor impli-

cated in the recognition of ubiquitinated plasma mem-

brane proteins through their Ub-interacting motifs).113

Endocytosed MHC class I molecules traffic via multivesic-

ular bodies to lysosomes, using the endosomal sorting

complex 1 machinery, of which TSG101 binds Ub and

sorts ubiquitinated proteins to multivesicular bodies.90

The HIV Nef protein uses the endocytic sorting

machinery to misdirect MHC class I molecules away from

the cell surface.114–116 Nef is a 27 000 MW myristolated

protein that associates with the CYT domain of HLA-A

and HLA-B molecules116 and uses a clathrin-independent

mechanism to sequester MHC class I to the trans-Golgi

network (TGN). Nef seems to co-opt the internalization

and recycling pathway of MHC class I molecules, which

is regulated by the small GTPase, ADP-ribosylation factor

6.115 Nef contains three motifs governing MHC interna-

lization; 62EEEE65 and 72PXXP75 are required for interna-

lization, while methionine20 within an amphiphatic

a-helix is necessary for TGN sequestration. The 62EEEE65

associates with phosphofurin acidic cluster sorting pro-

tein-1, which sorts Nef to the TGN, but does not facilitate

MHC class I sequestration. By localizing to the TGN, Nef

activates the internalization of MHC class I molecules in

a 72PXXP75 and possibly phosphatidylinositide 3-kinase-

dependent manner. Nef activity is different depending on

the cell type.117 In T cells, Nef disrupts MHC class I traf-

ficking to the cell surface, using an adaptor protein

1-dependent pathway to redirect the molecules to lyso-

somes.117–119 Adaptor protein 1 is a heterotetrameric

protein complex, mediating vesicular transport between

the TGN and endolysosomal pathways, by linking cargo
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proteins to clathrin.119 Nef can target MHC class I mole-

cules early in the folding pathway when expressed in T

cells, by preferentially binding newly synthesized hypo-

phosphorylated H chains. The phosphorylation status of

Nef interacting MHC class I molecules may in part be

responsible for the more pronounced effects on slow-

maturing MHC class I molecules, leading to their accu-

mulation within the TGN and diversion to lysosomes.117

Cross and criss-cross presentation – evolution to
circumvent potential biosynthetic inhibition?

Apart from the sequence polymorphism, MHC class I

molecules have also evolved alternative pathways for

accessing pathogen-derived peptides and potentially over-

coming the plethora of inhibitory mediators. MHC class I

molecules can present peptide from exogenously derived

antigen, via a process termed ‘cross-presentation’ of

which there appear to be several defined pathways.120

Cross-presentation enables MHC class I–peptide presenta-

tion of pathogen-derived antigens prior to them becom-

ing established and arming their immunoevasion

strategies. Of particular note, the production of inter-

feron-a/b, which is produced during viral infection,121

was found to also stimulate cross-presentation indepen-

dent of CD4+ T-cell help and CD40–CD40 ligand interac-

tions.122 A recently described ‘criss-cross’ pathway of

presentation whereby peptide from one cell can cross over

through gap junctions and be presented by neighbouring

cells123 would not only limit the spread of infection, but

would allow pathogen-derived peptides to be presented

from an infected cell that may have had its MHC

machinery disarmed.

Pathogens such as HCMV and herpes simplex virus,

though armed to provide an effective means of overcom-

ing cytotoxic T-cell recognition can trigger strong T-cell

responses. Such infections become a problem to the host

during times of immunosuppression. It is possible that

cross-presentation could be the answer to the apparent

paradox of host immunity in the face of such immune

evasion strategies.124

Although this review has concentrated on the MHC

class I biosynthetic pathway and the ability of viral patho-

gens to down-modulate or inhibit this pathway, it

remains to be seen whether bacteria and other pathogens

such as helminths can also target the biosynthesis of

MHC class I molecules. Bacterial evasion of the MHC has

been described for class II molecules125 and bacteria such

Chlamydia trachomatis and Mycobacterium tuberculosis

can inhibit classical and non-classical class I molecules at

the transcriptional level.125–127 Furthermore, certain bacte-

ria such as Salmonella enterica can affect antigen-process-

ing pathways128 but appear not to undergo clearance

unless expressed with particular MHC proteins,129 raising

the possibility that other non-antigen-presenting func-

tions of MHC molecules may be co-opted by pathogens

for their own survival.
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